Rolls-Royce Group 2016

©2016 Rolls-Royce plc

The information in this document is the property of Rolls-Royce plc and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce plc. This information is given in good faith based upon the latest information available to Rolls-Royce plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce plc or any of

its subsidiary or associated companies.

Trusted to deliver excellence

Aktuelles Geschäftsergebnis (2015)

Rolls-Royce in Deutschland

Rolls-Royce International

Rolls-Royce Power Systems Die Rolls-Royce Power Systems AG mit Sitz in Friedrichshafen Ist mit den Produkten der Marken MTU, MTU Onsite Energy, L'Orange und der norwegischen Bergen Engines ein Spezialist für Großmotoren, Antriebssysteme und dezentrale Energieanlagen.

MTU/MTU Onsite Energy
U'Orange

Rolls-Royce Marine Deutschland

 Rolls-Royce Deutschland Einziger behördlich genehmigter Triebwerkshersteller Deutschlands mit voller Systemfähigkeit

N3 Engine Overhaul

Services Joint Venture zur Triebwerkswartung mit der Lufthansa Technik AG

*inkl. Rolls-Royce International und Rolls-Royce Power Systems Repräsentanz in Berlin

Über 6.000 Rolls-Royce Triebwerke "Made in Germany" ausgeliefert

14 Rolls-Royce Standorte in Deutschland*

Mehr als 24.000 MTU-Dieselmotoren für kleine und große Schiffe ausgeliefert

Rund 12.000 Mitarbeiter in Deutschland

Trusted to deliver excellence

Rolls-Royce Deutschland 2015 Auf einen Blick

Triebwerksauslieferungen Rolls-Royce Deutschland

2015

FOD – Forgeign Object Damage

M.Wirth 21-02-2017

© 2017 Rolls-Royce Deutschland Ltd & Co KG

The information in this document is the property of Rolls-Royce Deutschland Ltd & Co KG and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied, without the express written consent of Rolls-Royce Deutschland Ltd & Co KG. This information is given in good faith based upon the latest information available to Rolls-Royce Deutschland Ltd & Co KG, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce Deutschland Ltd & Co KG or any of its subsidiary or associated companies.

Trusted to deliver excellence

Rolls-Royce proprietary information - UNCLASSIFIED

It is foremost a safety issue!

Hudson River Accident – Duel Engine failure after multiple Bird Strike

7

It is a cost issue!

Wildlife Strikes to Civil Aircraft in the United States, 1990-2013

	24-year totals (1990–2013)							
	Number of reported strikes				Reported economic losses ¹			
Wildlife group or species	Total	With dam- age	With neg. EOF	With multiple animals ²	Aircraft down time (hrs)	Reported costs (\$)		
Total known birds	69,777	6,319	4,983	12,584	439,424	464,008,815		
Total unknown birds	68,480	6,138	3,887	7,029	150,918	132,729,045		
Unknown bird - ? size	3,601	310	265	197	8,305	2,687,676		
Unknown bird - large	2,549	1,008	485	274	45,292	48,558,389		
Unknown bird - medium	33,709	3,962	2,069	2,644	84,535	64,139,510		
Unknown bird - small	28,621	858	1,068	3,914	12,786	17,343,479		
Total birds ³	138,257	12,457	8,870	19,613	590,342	596,737,860		

Table 17. Continued (Page 17 of 21)

Source: FEDERAL AVIATION ADMINISTRATION NATIONAL WILDLIFE STRIKE DATABASE SERIAL REPORT NUMBER 20

A400M – Unprepared Runway Trials

A400M – Thrust Reverse

Airbus A350-900 XWB

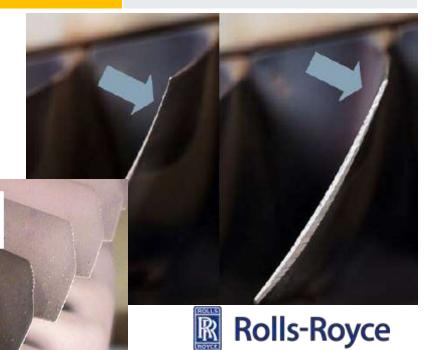
Rolls-Royce proprietary information - UNCLASSIFIED

Content

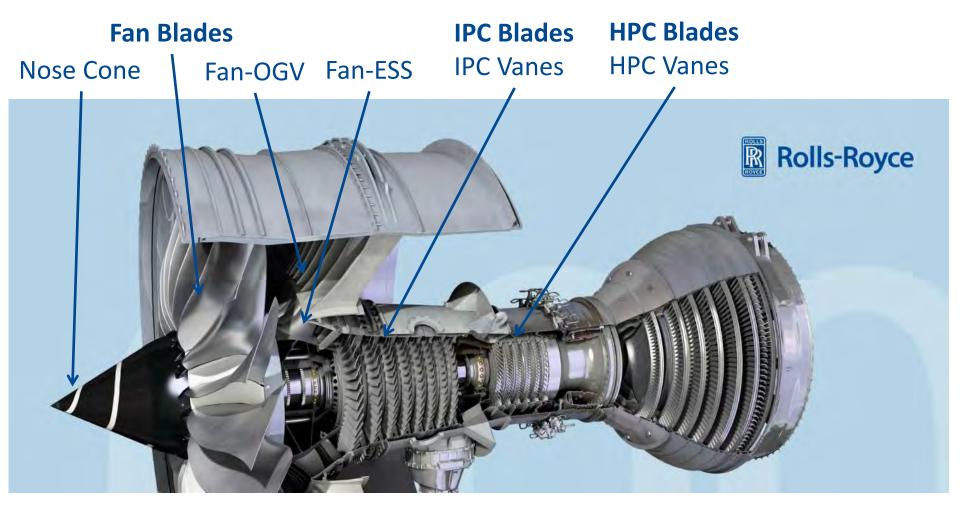
- 1. Types of FOD
- 2. Affected Components
- 3. Typical Damages
- 4. Engine Design for FOD
- 5. Engine Installation and Operation
- 6. Certification Requirements
- 7. Drones a new challenge

Types of FOD

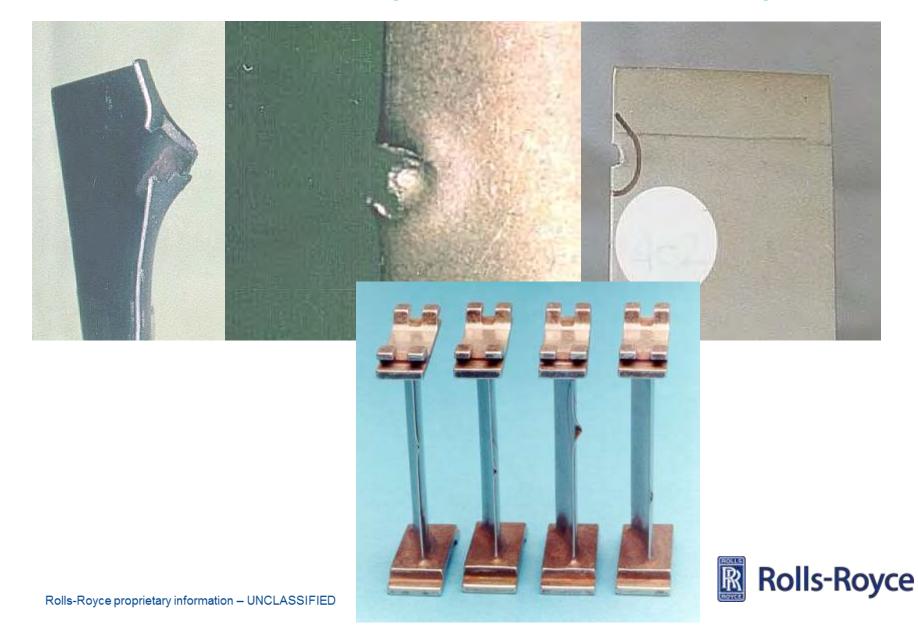
Soft particle FOD	Hard particle FOD	DOD – Domestic Object Damage		
Bird (rarely common cause)	e.g. Gravel			
Ice – Slab (common cause)	Bolts / Nuts / Rivets /			
Hail (common cause)	Acoustic Liners (ra	re) / Intake Pieces /		
	Drones			


- There is a grey area between FOD and Erosion
- Erosion: Particles are too low energy to leave nicks but due to their number and speed, they will eventually cause severe damage
 R6 V2500 D5,

→ Sand / Dust Erosion


- → Water Erosion
- ➔ Volcanic Ash Erosion

R6 V2500 D5, typical erosion pattern.


Components that are affected most by FOD

14

Hard Particle FOD (HPC Blades / Vanes)

Soft Particle FOD (Nose Cone - Bird)

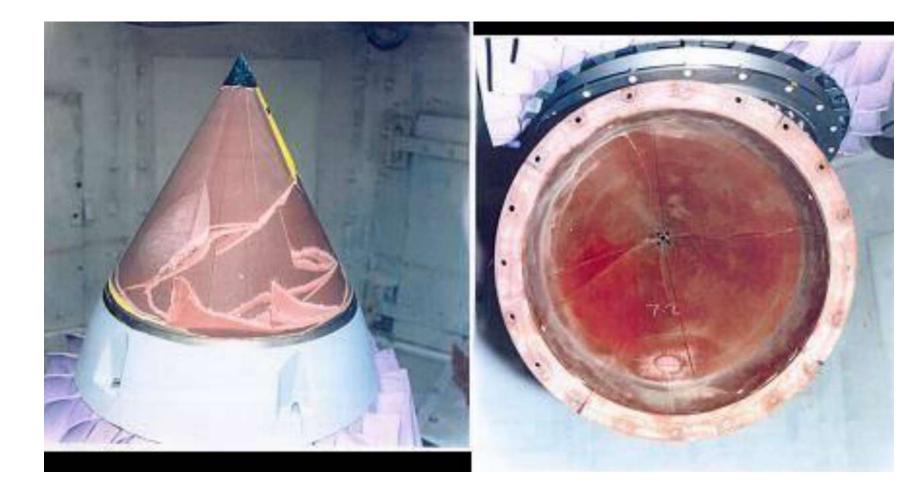


Figure 13. The spinner cone immediately after impact with the 6.0lb bird.

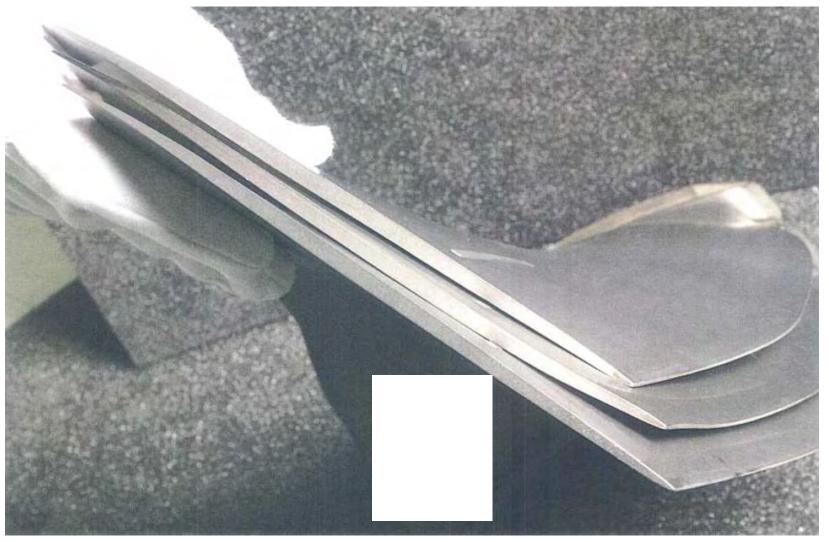
16

Soft Particle FOD (Nose Cone - Bird)

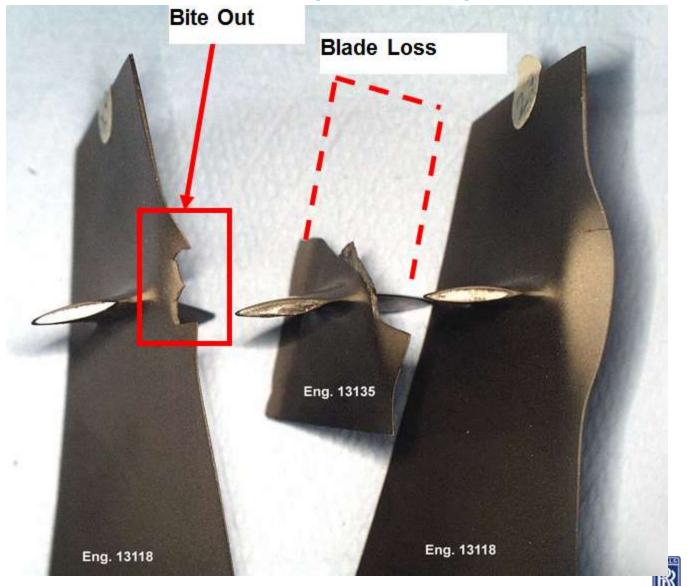
Soft Particle FOD (Fan Blade - Bird)

Canada Geese

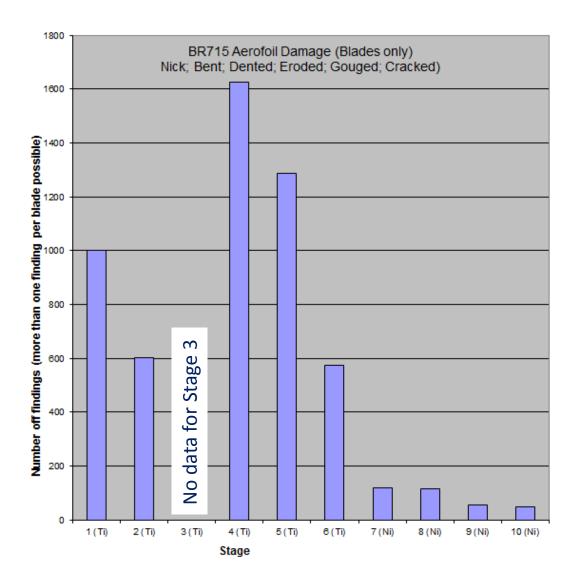
High Power –


Low Power

Both events caused IFSD, uneventful landing.

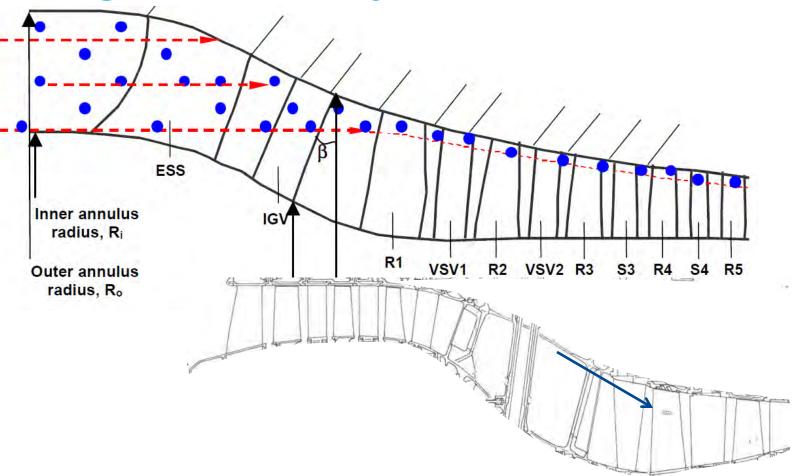


Soft Particle FOD (Fan Blade – Ice Slab)



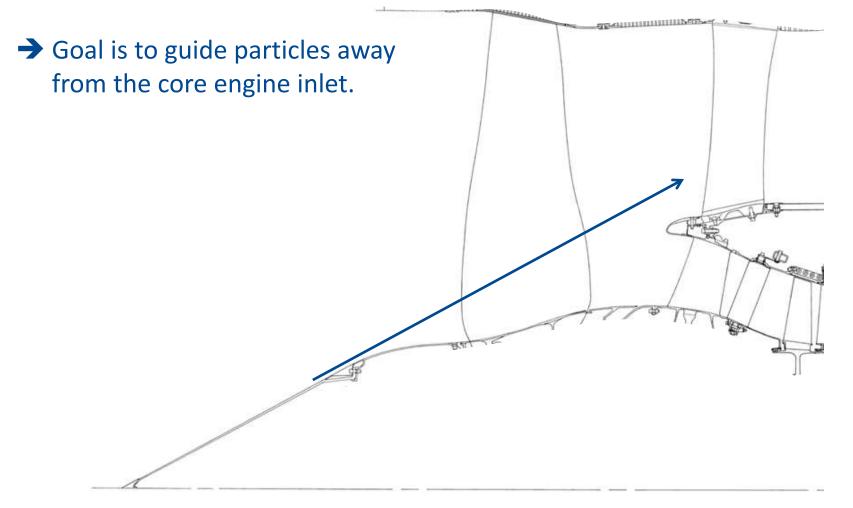
Soft Particle FOD (HPC R1)

Design: Materials – make a big difference!

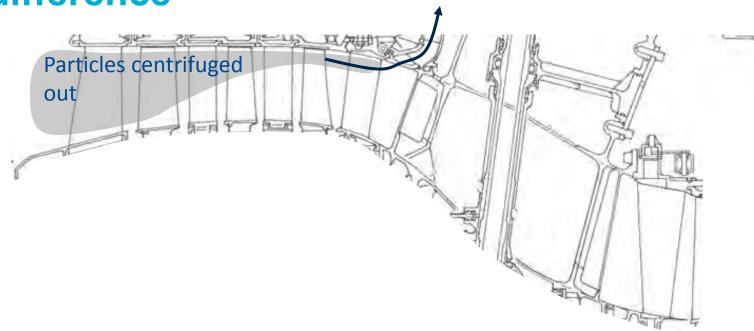


21

- Compressor Blade Material will strongly affect number of FODfindings.
- Typical for Blades are Titanium-Alloys up to about 450°C, then Nickel-Alloys (IN718).


Design: Particle Trajectories

The annulus shape can influence the blade height where FOD occurs most.
 Most Particles will be centrifuged outwards quickly.

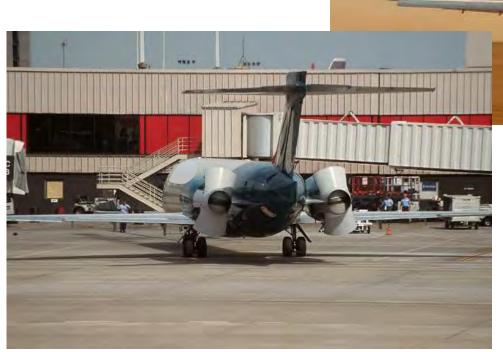


Design: Particle Trajectories

Design: Bleed Offtakes can make a difference Booster Bleed Valve

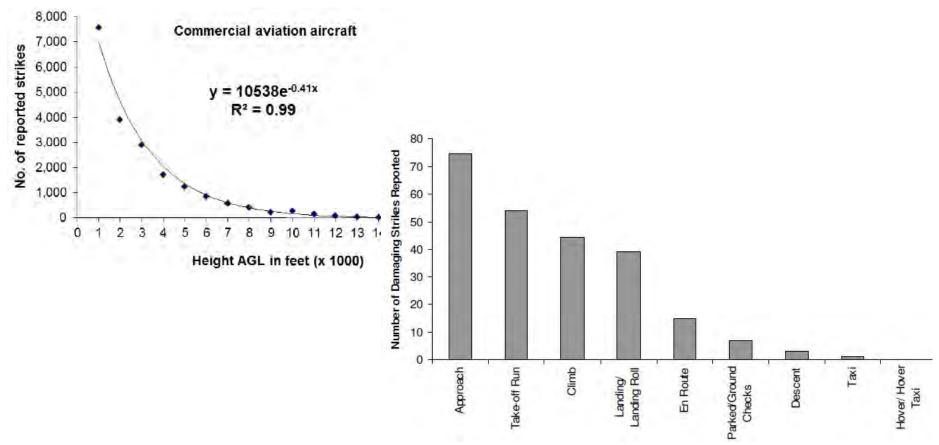
→ Bleed Offtakes can help reduce the threat for subsequent stages.

Engine Installation


→ Engine Ground Clearance

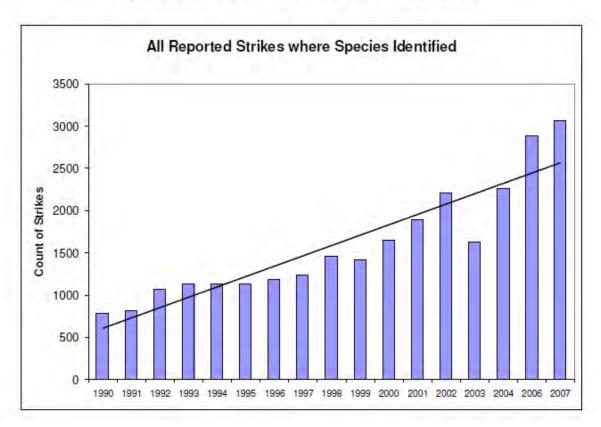
→ Engine relative Position to Wings and Undercarriage

Rolls-Royce proprietary information - UNCLASSIFIED


Engine Operation

 Condition of Airfields / Environment
 Operating Practice (backing off the terminal with the Thrust reverser)

Bird Strikes


Source:

- 1. FEDERAL AVIATION ADMINISTRATION NATIONAL WILDLIFE STRIKE DATABASE SERIAL REPORT NUMBER 20
- 2. EASA Bird Strike Damage & Windshield Bird Strike Final Report

Bird Strikes

A significantly greater trend can be seen for all species, indicating that the above may simply be part of the general trend in bird strike reporting driven by the increased attention to reporting all strikes (mandatory in the UK since 2004). This is likely to affect mainly the low mass, non-damaging strikes that would previously have gone unreported.

Figure 5-4 Strike Trends for All Species

Source: EASA Bird Strike Damage & Windshield Bird Strike Final Report

Bird Strikes – Bird Management @ Airports

At the 2013 meeting of Bird Strike Committee-USA in Milwaukee, demonstrations were provided on various wildlife management techniques (e.g., pyrotechnics, left; live traps, right) during a field trip to General Mitchell International Airport. BSC-USA (www.birdstrike.org) is an organization of government and aviation industry members. Photo, R. A. Dolbeer.

Source: FEDERAL AVIATION ADMINISTRATION NATIONAL WILDLIFE STRIKE DATABASE SERIAL REPORT NUMBER 20

29

Certification Requirements (EASA / FAA)

Chapter	Title	FOD	Requirement			
CS-E540	Ingestion of foreign matter	Anything "likely" to hit both engines	Continue safe operation, no unacceptable effect on operability or performance			
CS-E800	Bird Ingestion	Depends on inlet size, 1,85kg 3,65kg.	 Depends on Bird size. 1. Large: No Hazardous effect 2. Large Flocking: <50% thrust loss 3. Medium: <25% thrust loss 			
CS-E790	Rain and Hail	25-50mm Hailstone	No unacceptable thrust loss or mechanical damage			
CS-E780	lcing	Ice Slab, depends on inlet area 881435cm ³	No unacceptable damage or thrust loss.			
CS-P360 (Propeller)	Bird Impact	1,8kg bird	No major or hazardous effect.			

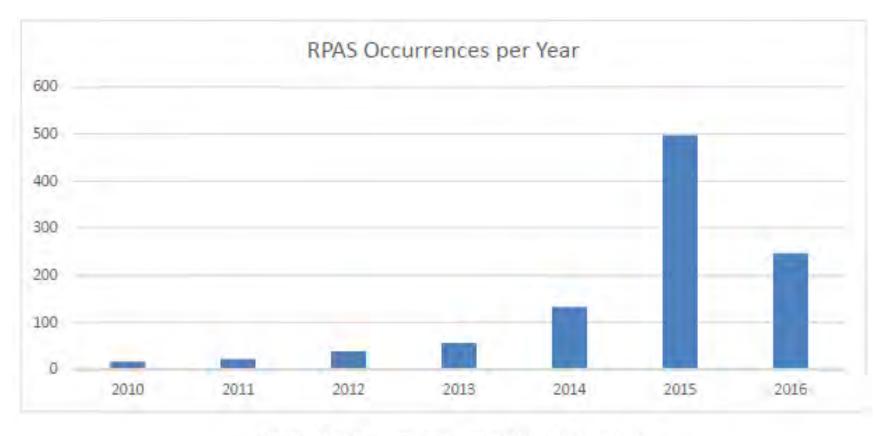


Figure 1 RPAS occurrences per year - 2010 to 31 May 2016.

Source: EASA Drone Collision Task Force; Oct. 2016

Rolls-Royce proprietary information - UNCLASSIFIED

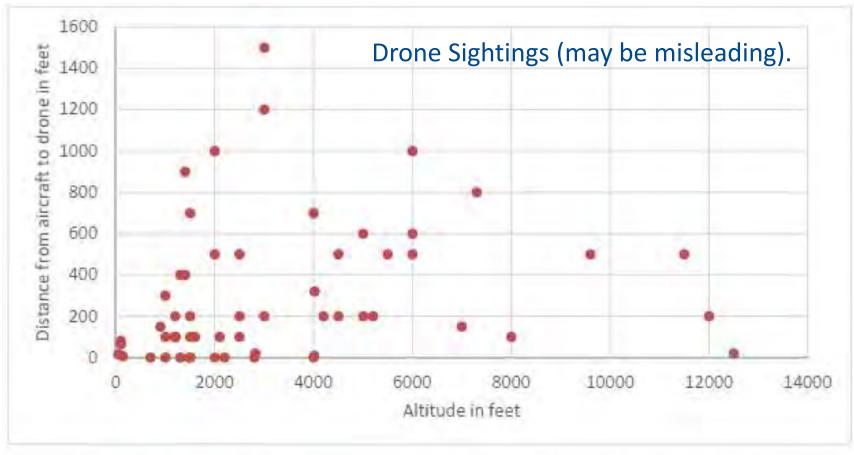


Figure 2 Distribution of RPAS Occurrences - Actual Aircraft Altitude vs Distance to Drone.

Source: EASA Drone Collision Task Force; Oct. 2016

"However, occurrences above 6 000 ft of altitude should not be disregarded, as aircraft groundspeeds increase with altitude, which could make an impact with a drone or even a weather balloon a very serious event."

"Lithium batteries contain hazardous materials such as lithium metal and flammable solvents, which can lead to exothermic activity and runaway reactions in case of impact with aircraft components following collisions."

Source: EASA Drone Collision Task Force; Oct. 2016

Rolls-Royce proprietary information - UNCLASSIFIED

Drones – Threat Specifications

Drone Class	Threat Type	Element	Weight (g)	Density (kg/m3)	Dimensions (mm)/Typical Shape	Quantity	Max speed (m/s)	Zd-max (m)	Zd-lim (m)
Large	TI	Drone	3500	~	450x450x301	-	20	5000	500
	Tm	Battery	670	2000	Parallel piped	1			
	Th	Motor	106	4000	Cylinder	4			
Medium	ŢI	Drone	1500	-	290x196x290	-	20	5000	500
	Tm	Battery	462	2000	Parallel piped	1			
	Th	Motor	56	4000	Cylinder	4			
	TI	Drone	500	+	328x382x89	+	18	1000	150
	Tm	Battery	130	2000	Parallel piped	1			
	Th	Motor	15	4000	Cylinder	4			
Harmless	TI	Drone	250	-	200x200x140	-	18	1000	150
	Tm	Battery	65	2000	Parallel piped	1			
	Th	Motor	7.5	4000	Cylinder	4			

Source: EASA Drone Collision Task Force; Oct. 2016

Threat Type:

- TI: Threat: low density
- Tm: Threat- medium density
- Th: Threat- high density

Rolls-Royce proprietary information - UNCLASSIFIED

Altitude:

- Zd-max: Maximum flyable altitude capability above sea level.
- Zd-lim: Max altitude limited by hard-coded software limitation

- Hard Particle FOD at altitude
- Unlikely to affect more than 1 engine
- Limited data available so far, but may strike at unusual high altitudes
- High Mass
- Uncontrolled materials (Lithium, Silver (?), Copper, traces of Cl, S)

Source: EASA Drone Collision Task Force; Oct. 2016

Discussion

